A\
p 9

4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

2\

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

The Use of Machines to Assist in Rigorous Proof [and
Discussion]

R. Milner and R. S. Bird

Phil. Trans. R. Soc. Lond. A 1984 312, 411-422
doi: 10.1098/rsta.1984.0067

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1984 The Royal Society

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;312/1522/411&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/312/1522/411.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org
Phil. Trans. R. Soc. Lond. A 312, 411-422 (1984) [411]
Printed in Great Britain
The use of machines to assist in rigorous proof
By R. MILNER

Computer Science Department, University of Edinburgh, James Clerk Maxwell Building,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, U .K.

A methodology for computer assisted proof is presented with an example. A central
ingredient in the method is the presentation of tactics (or strategies) in an algorithmic
metalanguage. Further, the same language is also used to express combinators, by
which simple elementary tactics — which often correspond to the inference rules of the
logic employed — are combined into more complex tactics, which may even be
strategies complete for a class of problems. However, the emphasis is not upon
completeness but upon providing a metalogical framework within which a user may
express his insight into proof methods and may delcgate routine (but error-prone)
work to the computer. This method of tactic composition is presented at the start of
the paper in the form of an elementary theory of goal-seeking. A second ingredient
of the methodology is the stratification of machine-assisted proof by an ancestry
graph of applied theories, and the example illustrates this stratification. In the final
section, some recent developments and applications of the method are cited.

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

1. A THEORY OF GOAL-SEEKING

The search for a proof of a conjecture expressed as a formula in some formal language is
strikingly similar to many goal-seeking activities. These activitives are as widely different as
seeking to win at chess and seeking to meet a friend before noon on Saturday. But the similarity
can be articulated in terms of a little theory of goal-seeking; a theory that has nothing to do
with finding the best strategy, or with minimizing the prospect of failure (important though
these things are), but which tries to make precise how concepts like goal, strategy,
achievement, failure, etc. relate logically to each other. Before applying this theory to the
business of machine-assisted proof, we shall exhibit some ofits generality by means of an every-day

example.

p
[\ \

We may discern two prime entity classes in any sphere of goal-seeking activity: the goals

and the events. A goal may sometimes be thought of as a description that may be satisfied by
one or more (or no) occurrences, and an event is simply a particular occurrence. For example:

a goal, G,: A and B to meet before noon on Saturday;
anevent, E,: A meets B under the clock at Waterloo Station at 11h53 on Saturday.

SOCIETY

It is clear that event E, satisfies the description that has been designated as goal G, i.e. it
achieves goal G,. In general, whatever the sphere of activity, we must postulate or define a

THE ROYAL

relation of achievement between events and goals:
achieves S event x goal

(where we use the nouns event, goal in the singular as type symbols, standing for the classes
of all possible events and all possible goals).

PHILOSOPHICAL
TRANSACTIONS
OF

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to QJ

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MIKOIY
Www.jstor.org

http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
R

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

412 R. MILNER

Now, in planning how to achieve G,, we might justifiably replace it by two rather more
specific subgoals:

G,;:A to arrive under the clock at Waterloo Station before noon on Saturday;
G,,:B to arrive under the clock at Waterloo Station before noon on Saturday.

In fact we can isolate the method by which G,, and G,, are gained from G,, and call it a tactic.
In this case we might call it the clock-at-Waterloo-Station tactic, and it could be applied to
many different goals (differing from G, in time, date and persons, for example) to yield in each
case a different pair of subgoals. In general then, we may express tactics as partial functions
from goals to lists of goals:

tactic = goal — goal list

and we say that a tactic fails upon, or is inapplicable to, a goal outside its domain. In our
example, the clock-at-Waterloo-Station tactic would fail on the goal ‘A must never meet B
again’, but may not fail on ‘Ronald Reagan to meet Napoleon Bonaparte before noon on
Saturday’ (though some later tactic, applied to a refined subgoal, will fail in the attempt to
get a dead man to move).

It is important to note that a tactic may be invalid. In our example, a variant of the chosen
tactic would be invalid which, when applied to G, yielded variants of G,, and G,, in which
‘noon’ was replaced by ‘13h00°. We now make precise the property of validity of tactics; to
do so we need a new entity class. For each sphere of activity, we postulate a collection of
procedures; each procedure represents how, given a list of events, some new event may be realized;
that is:

procedure < event list — event

(procedures are partial functions; they too may fail). Now we can see the clock-at-Waterloo-
Station tactic is justified just because we are assuming the existence of a waiting procedure,

W: A and B each waits until he sees the other.
For W, when applied to the following pair of events that achieve G,, and G,, respectively,

E;,: A arrives under the clock at Waterloo Station at 11h47 on Saturday;
E,,: B arrives under the clock at Waterloo Station at 11h53 on Saturday;

will yield an event that achieves G,, namely the event E, given above.

In fact, we can see that the procedure W is stronger still; it has the property that it will,
from any pair of events that achieve G,, and G,, (differing perhaps in time from E,,, E,,),
produce an event that achieves G,. This is what truly justifies the clock-at-Waterloo-Station
tactic when applied to G,.

But we can conceive a tactic whose application to one goal G, may be justifiable, but whose
application to another goal G] (even though it succeeds in producing some subgoals, G}, and
G, say) is unjustifiable because there is no justifying procedure that, given achievements
(achieving events) of G}, and G,, will always produce an achievement of G;. Such dishonest
tactics — ones that promise more than can be performed — are to be avoided; an honest tactic
will be called valid, and to define validity we first wish to refine the notion of tactic.

A sensible tactic, when it resolves a goal G into subgoals, should make explicit a procedure

http://rsta.royalsocietypublishing.org/

S0
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE USE OF MACHINES FOR RIGOROUS PROOF 413

(which may depend upon G) that it claims will always lead from achievements of the respective
subgoals to an achievement of G. We therefore redefine

tactic = goal — goal list X procedure

and now we may define a tactic to be valid just when its claim, in the present sense, is always
justified.
Definition. A tactic T is valid if, whenever

T(G) = [G,; ...; G,],P

is defined for a goal G, and whenever events [E,; ...; E] respectively achieve the goals [G,;
..; G], then the event P[E,; ...; E] in turn achieves G.

Now it is essential for the achievement of distant or difficult goals that simple tactics be
composed into more complex ones, which are objects of the same type but may be called
strategies. Even in our example, if A starts from Andover and B from Birmingham then the
complete strategy will involve many component tactics. (The procedures that validate these
will be, for example, ‘B walks from the Underground station to the clock at Waterloo’.) We
shall illustrate below, in the context of machine-assisted proof, how tactics can be composed
in distinct ways, each represented by a certain combinator; we call such combinators tacticals,
and we say that a tactical is valid just when it preserves validity of tactics. Of course, where
possible only valid tacticals should be used.

Let us suppose that a strategy S for our toy problem has been composed in this way from
valid tactics, and is therefore itself valid. In the best case, we have

S(Go) = [1P,

which is to say that no subgoals remain to be achieved (we used [] to mean the empty list).
P, is then a plan for achieving G,, and need only be executed, i.e. it is applied to the empty
list of events, giving the event

Po[1,

which will achieve G, In the toy problem, this execution consists of real travel (and other action)
by A and B; in the context of machine-assisted proof, it consists of the performance of a formal
proof. Here, it is a matter of taste whether the human prover wishes to see this performance
done by the machine, in all its frequently repulsive detail, or wishes only to see the highlights,
or is merely content to let the machine announce the result (a theorem!). We indicate in the
sequel that the last alternative is often appropriate, since the human user has often exercised
(or gained) his insight into the problem in the process of composing his strategy. During this
composition he may well have interacted with the machine, in applying partial strategies and
then deciding whether or not he can make progress from the subgoals generated at each stage.

2. THE USE OF A COMPUTER TO MAKE PROOFS

The formal logic of LCF (Gordon et al. 1979) is a blend of the predicate calculus (with
equality) and the lambda calculus. It was based upon Dana Scott’s theory of domains of
continuous functions, and is particularly suited to the formulation and proof of properties of
algorithms and algorithmic languages. We need not be more precise here about its formulae,

http://rsta.royalsocietypublishing.org/

JA \
Y | \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

414 R. MILNER

since we are mainly concerned with aspects of proof methodology that apply to arbitrary logics.
For the present it is enough to state that its sentences are sequents (I',F), where F is a formula
and I' a finite set (or list) of formulae, and its theorems (proved sequents) are written I' —F.

Within the goal-seeking jargon of the previous section we have the following interpretations

(1) A goal is a sequent (I',F). (Prove F from assumptions I'.)

(2) An event is a theorem A G.

(3) An event At G achieves a goal (I',F) if for some subset I'” of I" the sequents (A,G) and
(I'",F) are identical, up to renaming of bound variables.

(4) A procedure is therefore a partial function that takes a list of theorems and yields a theorem.
The primitive (given) procedures are just the inference rules of the logic; further, derived
procedures (derived inference rules, or proof procedures) are derivable naturally by composition,
controlled algorithmically.

To manipulate these entities, and others relating to them, an algorithmic metalanguage called
ML is used. It is a general purpose functional programming language, whose power of handling
higher-order functions is particularly important; this is because tactics (as explained earlier)
yield proof procedures, which are functions, as results, and even more so because tacticals are
functions over tactics.

Basically, the elementary tactics are just ‘inverses’ of the given inference rules. The rule of
universal generalization provides a good example. The rule

I'~F .
GEN m (X not free in F)

is provided in ML by the function GEN, such that
GEN “x”: (T'HF)— (I'=Vx.F).

Note that GEN takes an extra parameter, which is a variable of the object language. Object
language constructions are quoted within the metalanguage, and we shall here use lower case
letters for object language variables, and upper case for metavariables over object language
constructs. The use of antiquotation 1 allows metavariables to occur within quotation, so that
if X =“x” and F = “x = y”, then we may write “VY1X.1F” in the metalanguage to mean
“¥x.x = y”. Now the tactic GENTAC, which inverts GEN, must take any goal (I',“V1X . 1F”)
and return the subgoal (I',F), together with the procedure GEN X, which justifies the
application of the tactic. In fact more care is needed, since the rule GEN fails when X is free
in I'; the following declaration of the tactic takes care of this, and is almost exactly as written
in ML:
val GENTAC (I',“V1X.1F”) =
let val X’ = variant X I’ {X’ is a variable not free in I'}
val F’ = subst [X’,X]F {replace X by X" in F}
in [([LF)], GEN X’ {subgoal list and justification)
end

kS

(the exact ML definition takes care to require the input formula to be of the form “Vx. ...
and to fail appropriately otherwise).
At a slightly higher level, we already need tacticals to build simple composite tactics that

http://rsta.royalsocietypublishing.org/

y A \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE USE OF MACHINES FOR RIGOROUS PROOF 415

a mathematician would apply without thinking. A good example is a tactic that repeatedly
strips off leading universal quantifiers, and ‘assumes’ the antecedent of any implication in the
goal formula, so that a goal like

(T, “¥x.1F, o Vy.Vz.1F, o 1F,”)
is transformed (assuming that x, y and z only occur bound) to the goal
(T ULF,Fy)Fy).

If, besides GENTAC, we have a primitive tactic DISCHTAC, which assumes a single
antecedent if there is one (i.e. it inverts the rule of assumption-discharge), then with two
tacticals, ORELSE and REPEAT, our composite tactic is just

| REPEAT (GENTAC ORELSE DISCHTAC).

The tactic T, ORELSE T,, when applied to G, acts like T,(G) unless this fails, in which case
it acts like T,(G); the tactic REPEAT T, when applied to G, applies T to G, then to all the
subgoals of T(G) and so on, until failure occurs or no subgoals remain. These tacticals have
one line definitions in ML, and are easily seen to preserve validity.

At a higher level still, we may express full automatic proof methods as tactics. One such
method is the resolution method due to Robinson. This is a complete proof method, at least
for the pure first-order predicate calculus, but in the context of interactive proof it is wise to
apply it in a controlled manner, just at those points in a strategy at which progress may be
expected by routine logical methods such as instantiation of assumptions, modus ponens and
the like. We shall not describe the tactic in detail, but we shall call it RESTAC when we later
employ it in an example. :

At a similar level is a simplification tactic, called SIMPTAC, based upon a collection of
equational theorems of form

't =t,

where t; and t, are terms, possibly containing variables that may be instantiated to match t,
to some subterm of a goal, which may then be simplified by substituting the corresponding
instance of t,.

All of these tactics, together with others based upon appropriate forms of induction and case
analysis, are indubitably part of the standard repertoire of a mathematician. But towards the
end of our list (certainly with simplification, induction and case analysis) we begin to meet
tactics that take a different specialized form in each problem domain. To take an introverted
example, proofs about a formal language typically employ a case analysis upon the leading
connective of a formula, and the number and nature of the cases is clearly domain-dependent.
Again, in some problem domains it is almost routine to use a combination of induction and
case analysis, while in others (consider elementary topology) induction is of no use; a relevant
induction rule may even not exist.

These observations suggest that in any realistic work with the machine as a proof assistant
we expect to be working in a particular problem domain, or theory as we shall call it, and that
when we specify the theory that concerns us the machine makes available to us all the data
types, non-logical constants and axioms of that theory, together with theorems that have

http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

416 R. MILNER

already been proved in that theory; it should also allow us access to those tactics that we have
previously defined either of general use or pertaining to the theory in question. Futhermore,
almost every interesting applied theory is founded upon more primitive theories (called its
ancestor theories), and while working in any theory we expect to have access to all material
pertaining to its ancestors.

An important function of the proof assistant is therefore to keep our tower of theories properly
organized, allowing us both to introduce new theories — by specifying their parents and their
own new types, constants and axioms — and to work in any existing theory (not only those at
the top of the tower) by proving new theorems in them.

In this work, polymorphic theories play a vital role. An example of such a theory is a theory
of trees whose nodes are labelled by objects of arbitrary type, where theorems (which are
also polymorphic) are proved without any assumption of the nature, i.e. the type, of the
node-labelling objects. Such theorems may be instantiated (by an inference rule called #ype
instantiation) later, during work on a daughter theory that involves trees with node labels of
some particular type; for example, this type may be integer in a theory of tree-sorting.

In the next section we illustrate several of these points by giving an outline of an approach
to a particular problem. Before we do so, we have to admit that the preceding exposition has
oversimplified one detail of our methodology (this was deliberate, since the methodology is not
clearly the best, and others are possible). In place of sequents (I',F) as goals, we adopt the
slightly more complex form (I',F,S) for goals; here, S is a set of assumptions that are equational,
and suitable for use as simplification rules by the tactic SIMPTAC. Other tactics are
embellished by letting them add suitable equations to S; for example, the tactic DISCHTAC,
which assumes an antecedent, is understood to add this antecedent to S as well as to I', in cases
where it is equational (and satisfies other criteria).

Finally, we draw attention to a point of great pragmatic significance. Our metalanguage
allows a user to write tactics — even invalid ones — with great freedom. But with this freedom
he can by no means generate an event that which is not a theorem. This follows from the fact
that events are objects of type theorem, and that the only operations for generating them are
the basic inference rules (like GEN) and rules derived from them. This is a fine illustration
of the security provided by a type discipline; indeed, without it we could not claim to present
a viable methodology.

3. AN EXAMPLE: A THEOREM ABOUT PARSING

We suppose that we wish to investigate the performance of a particular parsing algorithm,
which operates upon a list of symbols and produces a particular kind of tree known as a parse
tree.

Since there are two polymorphic theories — the theory of lists and the theory of trees — relevant
to our problem, we first discuss the creation of these theories, each as a daughter theory of the
NULL or pure theory, which contains no non-logical types, constants or axioms. We suppose
that the theory NULL possesses a type ONE, whose only proper member object is denoted
by the constant symbol () (which may be pronounced ‘nothing’).

To construct the theory called LIST, we first create a unary type constructor, also called LIST.
This will allow us to discuss objects of type o LIST; greek letters are used for type variables,

http://rsta.royalsocietypublishing.org/

JA

/ y

L A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE USE OF MACHINES FOR RIGOROUS PROOF 417

and type constructors are postfixed to their argument(s). We then introduce two constants, with
their polymorphic types:

NIL :a LIST
CONS :a—a LIST—»a LIST
APPEND:o LIST »a LIST—a LIST

(more constants may be useful, but we only need these for now). Finally, to establish the basis
of the theory, we introduce axioms that characterize the LIST constructor by establishing the
isomorphism

oo LIST ~ ONE+a xa LIST

and which characterize the constants, by stating (or entailing as simple corollaries) such
equations as

APPEND (CONS a x) y = CONS a (APPEND x y).

From this slender basis, many polymorphic theorems will follow while working in the theory
LIST; other list-processing functions may be introduced as constants to enrich the theory.

Entirely analogously, the theory TREE can be created. We first introduce a binary type
constructor TREE, characterized by the isomorphism

(0,B) TREE = o+ x (,) TREE + B x (o,) TREE x (o,) TREE,

which states, in effect, that a tree is either an o object (a TIP labelled with an object of type
o) or a node labelled with an object of type B and possessing either one or two son-trees. Then
we naturally introduce as constants the three tree constructors

TIP :a—(a,)TREE

NODE1:8>(o,) TREE > (a,) TREE

NODEZ2:B— (a,) TREE > (a,) TREE (0,) TREE,

which construct, from appropriate arguments, trees of the three respective kinds (just as NIL
and CONS are the list constructors).

It is a particular strength of the underlying logic of LCF, which is due to pioneering work
by Dana Scott, that from its induction rule (called computation induction) can be derived the
rules of structural induction for both lists and trees. Each of these may then be inverted in the
standard manner, described in the previous section, to form (for trees) the induction tactic
TREEINDUCTAC, which we shall have occasion to use in our example.

With the theories LIST and TREE as parents, we are now ready to introduce the lexical
theory, which we shall call LEX, in which we can state and prove our theorem about parsing.
The ancestry graph of theories is shown here.

NULL

/N

LIST TREE

e

http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

418 R.MILNER

For LEX, we first postulate two arbitrary types ID and OP, for the variables and operators
that occur in the symbol strings to be parsed. Since brackets (‘and ’)’ also occur as symbols,
we then define the type isomorphism

SYMB ~ ONE +ONE+ID+OP+OP.

The first two summands represent the left and right brackets, respectively, and the last two
represent the distinguished occurrences of an operator as a unary and a binary function symbol
respectively. We therefore introduce and axiomatize the five constructors

LB :SYMB

RB :SYMB

VAR :ID—->SYMB
UNARY :OP->SYMB
BINARY :OP -SYMB.

We are now ready to give the parsing algorithm, expressed as a set of axioms about a function
PARSE, whose type is

PARSE:SYMB LIST — (ID,OP)TREE x SYMB LIST.

Thus, PARSE takes an arbitrary symbol list, which begins with a well formed formula, and
produces from it a parse tree, representing the shortest initial segment of the argument that is
parsable, together with the remainder of the argument string. Notice that our theory will instan-
tiate polymorphic theorems about lists and trees, since, for example, a parse tree is a tree whose
tips are labelled with identifiers in ID, and whose nodes are labelled with operators in OP.

Now the axioms for PARSE can be written (with a little syntactic sugar) as follows, where
we use logical variables x € ID, fe OP, se SYMB LIST and te (ID,OP)TREE:

PARSE (CONS(VAR x)s) = (TIP x,s)

PARSE (CONS(UNARY f)s) = (NODEL1 f t, §")
where (t',s") = PARSE s

PARSE (CONS LB s) = PARSETWO t’' ¢
where (t',s") = PARSE s

PARSETWO t (CONS(BINARY f)s) = (NODE2 ft t', CHECKRB s")
where (t',s") = PARSE s

CHECKRB (CONS RBs) =s.

The sugaring here is the use of where, which is expressible by a simple logical combinator.
Note that the action of PARSE depends upon the nature of the leading symbol of its argument.
The detailed working of the parser need only concern the most assiduous reader; we intend
mainly to illustrate the style in which an algorithm may be presented as a set of equational
axioms.

To express the property that we wish to prove, we also need a simpler function

UNPARSE: (ID,OP)TREE -~SYMB LIST,

http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE USE OF MACHINES FOR RIGOROUS PROOF 419

which linearizes any parse tree into the symbol string that it represents. UNPARSE is
axiomatized thus:

UNPARSE(TIP x) = CONS(VAR x)NIL
UNPARSE(NODEI1 ft) = CONS(UNARY f) (UNPARSE 1)
UNPARSE(NODE2 f t t') =
APPEND(CONS LB(UNPARSE t))
(APPEND(CONS(BINARY f) (UNPARSE t'))
(CONS RB NIL))).

The correspondence that we intend, between strings and parse trees, can be illustrated by a
little example, in which +, X appear as binary operators and 4/ as a unary operator:

X
parse
(xx (Vy+2)) x N
~nparse 1
v

¥

where we have ignored the ‘tail’ string also produced by PARSE.
Indeed, this correspondence is precisely the goal that we wish to prove; it may be expressed
more exactly, and in general, as

Vt.Vs. WD[t] > PARSE(APPEND(UNPARSE t)s) = (t,s).

Here, the antecedent WDJ[t] is a formula (which we do not detail) with a free variable t, and
expresses that the tree t is appropriately well defined. Let us call this formula F. Then the first
step of tactical proof is to set up a goal

G = (I',F,S),

where I' is empty and S is a set of simplification rules that includes simple properties of the
basic functions over lists and trees, and all the axioms of PARSE and UNPARSE.

The intuition that the user must provide, for this problem, is that it is natural to attack it
by structural induction upon trees, and that thereafter it should yield to a mixture of
simplification (SIMPTAC) and routine logical manipulation (RESTAC). But other ingredients
are needed in the complete strategy. First, because quantification and implication both occur
in the goal formula, it is reasonable to expect some use of GENTAC and DISCHTAC. Second,
the formula WD[t] (which we did not detail) is the subject of some simple lemmas, which would
be applicable in many problems about trees and may reasonably be expected to have been
proved in advance. It is worth noting that these lemmas, and many of the simplification rules
in S, are theorems not of the theory LEX but of its parent theories LIST and TREE. This

http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

420 R. MILNER

illustrates how a proof in an interesting applied theory will often be stratified; it will rarely
be conducted entirely within the theory in which it is stated.

In view of the above remarks, a reasonable interactive approach to the goal G would be
to attack it with TREEINDUCTAG, followed perhaps by SIMPTAC, and then to inspect the
resulting goals to see what further tactics are appropriate. This was the approach adopted when
we first tackled the problem with LCF. When the theorem was successfully achieved by such
means, it was observed that the combination of tactics used was remarkably similar to that
which succeeded on other problems, in totally different problem domains. The difference was
mainly in the particular induction rule used, in the particular auxiliary lemmas employed, and
in the particular simplification rules embodied in the main goal G. This suggested that a widely
applicable strategy could be expressed parametrically (the above particulars being supplied
as parameters in each different problem). While we have not yet fully separated the general
from the parametric ingredients in this strategy, it is informative to present the instance of it
that works with no interaction whatever for our present problem, and exactly as it is written
in ML. In doing so, we employ one further tactical THEN, which is of general use; the tactic
T1 THEN T2 first applies T1 to a goal, then T2 to all subgoals produced. Note that THEN
is clearly associative.

If we represent by L the set of auxiliary lemmas (pertaining to our antecedent formula
WD[t]), then the complete strategy is expressed in ML as

USELEMMASTAC (L) THEN

TREEINDUCTAC THEN SIMPTAC THEN
REPEAT (GENTAC ORELSE DISCHTAC) THEN
RESTAC THEN SIMPTAC.

Allingredients of this strategy have been discussed previously, except the first line, which merely
has the effect of introducing the lemmas, so that when (eventually) RESTAC is applied to
descendent goals it may employ these lemmas. _

This discussion cannot, for lack of space, explore many finer points of strategy construction
(for example, why has SIMPTAC been used here in exactly two places?), but it has illustrated
that powerful strategies can find a pleasantly simple and legible form of expression. For a more
detailed exposition of the parsing problem, see Cohn & Milner (1982). A point that deserves
the strongest emphasis is that this proof methodology does not pursue the ‘will-o-the-wisp’ of
magically all-powerful strategies; it merely represents a step towards the ability to capture
whatever expertise we develop in particular problem domains, by providing a suitably
expressive metalogical framework.

4. SOME RECENT DEVELOPMENTS

The nature of the metalanguage ML is independent of the logic that is to be used. The richness
of (meta)types in ML is such that any logic can be presented within it. Since it is proposed to
use ML with a variety of logics, and since the language has evolved somewhat since its inception,
it has become important to establish a standard design for it. A step towards this standard is
presented in Milner 1983 ; though written by the present author, it represents the work of many
interested researchers.

Concerning application, several studies have been made. We cite two recent examples of

http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

A

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE USE OF MACHINES FOR RIGOROUS PROOF 421

proofs made in LCF with its original logic, which was also used for the example in the present
paper. Michael Gordon has shown how to validate computer hardware design; he verifies that
a simple but non-trivial complete computer meets its behavioural specification (Gordon
1983 4,b). Stefan Sokolowski has formally demonstrated the soundness of a Hoare logic for
reasoning about imperative programs (Sokolowski 1983). These two very different applications
show that the original logic is quite appropriate for problems in computer science itself. Larry
Paulson has enriched the logic in his work with Gordon at Cambridge; in particular, he has
shown how the simplification mechanism can be rendered much more flexible and powerful by
the use of tactical methods to compose simplification primitives in a variety of ways (Paulson
1983).

The ML framework, with its method of tactical engineering, has also been applied to other
logics. At Goteborg, Sweden, a group have adapted LCF to implement the logic of intuitionistic
type theory (Peterssen 1983). At Cornell University, Robert Constable and his colleagues are
building PRL, an environment for computer assisted proof particularly in constructive
mathematics; they employ tactics and tactic combination in an adventurous way, in particular
to combine large tactics — such as a partial decision procedure for arithmetic — into still larger
ones (Constable & Bates 1983).

Recently David Schmidt, at Edinburgh, has been studying the fundamental relation between
inference rules and tactics (Schmidt 1984). Specifically, he addresses the question whether an
inference rule may be represented directly by a tactic, rather than, as here, by a function (from
theorems to theorems) from which in turn a tactic is derived.

It emerges from these various studies that the method of composing proof tactics, which is
illustrated in this paper on a rather simple example, not only provides a means of communicating
proof methods to a machine, and of tuning them to particular needs, but also presents to
mathematicians and engineers a lucid way of communicating such methods among themselves.

REFERENCES

Cohn, A. & Milner, R. 1982 On using Edinburgh LCF to prove the correctness of a parsing algorithm. Internal
rep. no. GSR-113-82, Computer Science Dept, Edinburgh University.

Constable, R. L. & Bates, J. L. 1983 The nearly ultimate pearl. Teck. rep. no. TR 83-551, Computer Science Dept,
Cornell University.

Gordon, M. 19832 LCF-LSM: a system for specifying and verifying hardward. Tech. r¢p. no. 41, The Computer
Laboratory, CGambridge University.

Gordon, M. 19834 Proving a computer correct with the LCF-LSM hardware verification system. Tech. rep. no.
42, The Computer Laboratory, Cambridge University.

Gordon, M., Milner, R. & Wadsworth, C. 1979 Edinburgh LCF. Lecture Notes in Computer Science, vol. 78. Berlin:
Springer-Verlag.

Milner, R. 1983 A proposal for standard ML. Internal Rep. no. CSR-157-83, Computer Science Dept, Edinburgh
University.

Paulson, L. 1983 Higher order implementation of rewriting. Sci. computer Programming 3, 119149,

Peterssen, K. 1983 A programming system for type theory. LPM Memo. no. 21, Dept of Computer Science,
Chalmers University of Technology, Goteborg, Sweden.

Schmidt, D. 1984 A programming notation for tactical reasoning. In Proceedings of Seventh International Conference
on Automated Deduction, Lecture Notes in Computer Science, vol. 170, pp. 445-459.

Sokolowski, S. 1983 An LCF proof of soundness of Hoare’s logic. Internal rep. no. CSR-146-83, Computer Science
Dept, Edinburgh University.

http://rsta.royalsocietypublishing.org/

y

A A

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

A

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

422 R. MILNER

Discussion

R. S. BirD (Programming Research Group, Oxford Unwersity, U.K.). 1 have a question about
induction. The major problem about inductive proofs is surely that of finding the right
generalization of the induction hypothesis to enable the proof to go through. I have a suspicion
that the parse-unparse problem Dr Milner presented was formulated in such a way as to
incorporate the necessary generalization from the start. Is this suspicion correct and, if so, what
can be done to systematize the search for generalizations of hypotheses?

R. MiLNER. I agree that a major problem in inductive proof is to find a sufficiently general
induction hypothesis, and confirm that the induction formula for the parse—unparse formula
was found by us and not by the machine.

LCF was not designed to incorporate the kind of intelligence needed to find such induction
formulae, which is an arbitrarily hard task. But it was designed to allow a user to communicate
strategies for such tasks to the machine. Indeed, the pioneering work by Boyer and Moore,
on finding induction formulae, consists of a composite strategy that can be written in ML quite
conveniently.

http://rsta.royalsocietypublishing.org/

